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ABSTRACT:  Results for the two-phase 
supercooled Stefan problem on a finite domain 

are obtained by a numerical Phase-Field (PF) 
model.  The PF results are shown to be made as 

close as desired to the classical sharp-interface 
similarity solution, in the semi-infinite domain 

limit.  A basic engineering introduction to PF 
modeling and guidelines for a simple fixed-grid 

computational implementation are also given. 
 

 
 

INTRODUCTION 

 

The numerical modeling of solidification processes has to deal with the location of the 

solid-liquid (SL) interface, which is not known in advance.  The prototype of such “free-

boundary” problems is the so-called Stefan solidification, which consists of a slab of a pure 

substance initially at a definite state (e.g., liquid),  that undergoes phase-change as heat is 

exchanged with the surrounding medium across the wall at x=0 (see Fig.1). 

 

 

Fig.1 – One-dimensional (Stefan) slab solidification.  Analytical solutions are known 

             for simple boundary and initial conditions and when the domain [0, l] is 

             semi-infinite (l → ∞). 

 
 

For semi-infinite domains, the Stefan solidification problem admits a solution within 

the similarity class t/x ; as a consequence, the S-L interface progression is given by 
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tb)t( =Γ , where the constant b is a root of a well-known transcendental equation (the 

Newman solution
1,2
).   There is no analytical solution for the finite slab solidification, and/or 

when the thermophysical properties of the medium are not constant; for those cases, semi-

analytical or numerical methods are required. 

There are two broad classes of traditional numerical approaches to deal with free-

boundary problems, namely, (1) the front-tracking techniques, where the position of the 

interface is explicitly followed during the discrete time-integration, and (2) the so-called 

“enthalpy” technique and its variants, where the problem is re-formulated in terms of a global 

variable that does not explicitly depends on the local phase – like using the energy (or the 

enthalpy) instead of temperature as the main variable in solidification models.  A third 

alternative - the Phase Field (PF) model - gained recognition during the last decade, which 

allows for a better physical formulation of the phase-change problem; it introduces an “order 

parameter” to indicate the phase state, working along the ideas of the phase transition theories 

far from the critical point. 

The limitations of the traditional “enthalpy” techniques become apparent even in their 

simplest formulations.  For a pure substance, with constant thermophysical properties, the 

enthalpy H as a function of temperature T can be simply defined as:  
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, where Tm is the melting temperature, L is the latent heat of fusion and cs,l are the 

specific heats of the solid and liquid phases, respectively.  Now the enthalpy flux (for 

constant-volume systems, the difference between enthalpy end energy is immaterial) is 

determined from the temperature distribution via the Fourier law, so the traditional heat 

conduction equation can be written as   

 

T
t

H
2

∇=
∂

∂
             (Eq. 2) 

 

Given a temperature distribution at time t, we can therefore update the enthalpy for 

time t+∆t by Eq.2, and then invert Eq.1 to find the new temperature field.  Note that Eq.1, in 

fact, states that the phase state is a unique function of temperature, and that is precisely the 

weakness of the enthalpy model – since it is a common fact that materials can be supercooled 
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or superheated: experience shows that there can be a liquid phase for T<Tm and (more rarely) 

solid for T>Tm.  

It is to be noted that the same limitations do apply for the majority of the “front-

tracking” techniques, since they assume an explicit relationship between the local temperature 

and the phase state. 

To overcome that fundamental difficulty we must formulate the phase change as a 

dynamical process which depends on the local free-energy, which in turn is a function of 

temperature, in a manner that favors (but not determine) the liquid state for T>Tm.  That is 

exactly the main idea of the Phase-Field (PF) model, which we now briefly describe. 

 

THE PHASE-FIELD MODEL 

 

Let a phase variable p(x,t) be introduced, the values of which describe the phase state 

of the material.  We choose the value +1 corresponding to liquid, and -1 to solid.  The S-L 

interface is defined by points at which p=0.  In practice, there is always a transition layer of 

width ε between the solid and liquid phases(Fig.2), which can be made as small as desired, in 

order to approximate a sharp interface. 

 
 

  
 

 

 

 

 

 

Fig.2 – The order parameter in the PF model describes a diffuse interface between 

               phases, with characteristic length ε 

 

Caginalp & Sokolowsky3 and Fabbri & Voller4 have shown that the use of a suitable 

large numerical value for ε does not compromise the solutions of the PF equations (that does, 

however, introduce a cutoff for short wavelengths which could hinder a selection process in a 

non-isotropic multidimensional medium – a pertinent issue for the theory of dendrite 

fingering, for instance).   
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In equilibrium, the spatial profile of p(x,t) minimizes the total free-energy F of the 

system (or any other thermodynamically consistent functional).  In terms of a first-order 

expansion in the field  p, and the temperature T,  F  is written as: 

  ∫ 







+∇= rdTpFp 322 ),(
2

1
ξF         (Eq. 3) 

, where F(p,T) is a double-well potential having local minima at p=±1, and > is a 

characteristic length of order ε. 

Solidification (that is, the S-L interface progression) is driven by the potential term 

F(p,T),  which therefore should have the form depicted in Fig.3, exhibiting minima at p=±1, 

corresponding to equilibrium solid and liquid states. 

 

 

 

 

 

 

 

 

 

 

Fig. 3 – The phase-field potential, with temperature-dependent relative minima  

               height positions.   Tm is the melting temperature. 

 

Minimization of the functional F (Eq.3) with respect to the order parameter p, 

followed by a relaxation-time approximation5 with characteristic time ", gives the evolution 

equation 
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Eq. 4 can be given the following physical interpretation5.  The derivative -MF/Mp plays 

the role of a thermodynamic driving force for phase change, with respect to the coordinate p.  

At a temperature T equal to the equilibrium melting temperature Tm, the two minima at p=±1 

have exactly the same energy; for T>Tm, the minimum at p=+1 has lower energy (the liquid 

state is the stable state, the solid state being a possible metastable state above the equilibrium 

melting temperature), and conversely for T<Tm.  The natural tendency of the system is to 

-1 0 +  1

T = Tm

T < Tm

T > Tm

p

F
(
p
,T
)



FABBRI, M. . Phase-Field Solutions for the Classic One-Dimensional Two-Phase Supercooled Solidification Problem. Projeções, Bragança Paulista - São Paulo, v. 18, p. 11-20, 2000. 

 

relax towards equilibrium, with respect to spatial fluctuations in the phase value p(x,t); this is 

in fact the origin of surface tension effects, and it is accounted for by the term >
2
∇
2
p.  When 

the system is at equilibrium, every point of it is sitting in a minimum of F(p,x), at p=+1 or -1, 

except at some possible transition layers where the value of p undergoes steep changes; if 

those layers are not moving, then, locally, the driving force -MF/Mp balances exactly the 

surface tension term.  In the event that the system is out of equilibrium, the time evolution of 

p(x,t) is assumed to be proportional to the imbalance between the potential and the surface 

tension energy - this leads to a velocity-dependent term which includes, in a natural way, the 

kinetic relaxation during front progression. 

The diffuse interface theory of Allen & Cahn
6
 relates the surface tension F to the 

potential F and to the characteristic length >, as follows: 

     ∫
+

−

ξ=σ

1

1

dp)T,p(F2              (Eq. 5) 

At this level of macroscopic modeling of solidification, the potential F(p,T) can be 

chosen by numerical convenience, provided it has the qualitative features depicted in Fig.3. 

We follow Kobayashi
7
, and write F(p,T) as a fourth degree polynomial with fixed minima at 

±1: 

∫
−
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p
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W is an arbitrary constant (related to the entropy scale), and the temperature-

dependent term m(T) must satisfy |m(T)|<1, in order to have dF/dp with three distinct roots.  

We choose a simple linear form (from here on, we assume Tm=0): 

m(T) = (T             (Eq. 7) 

, restricting ( to a maximum value such that –1<m<+1 for every possible value of 

temperature the system may exhibit. 

A quick asymptotic expansion of the solutions of Eq.4 around an interface then shows 

that the temperature at the interface is proportional to the front velocity  v=d'/dt, 

v
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Eq.8 shows that the PF model incorporates automatically the kinetic effect at the SL 

front,  and the temperature of a moving interface must be lower than the equilibrium 
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temperature Tm.  Non-linear kinetic effects can also be accounted for
10
, and a non-linear 

relaxation-time model evolution is also possible
8
. 

Eq.4 for the phase field must be coupled to a heat transport equation for temperature, 

which presently is simply the usual Fourier law with a source term to account for the latent 

heat release at the interface: 

TK
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∂
ρ+

∂

∂
ρ            (Eq. 9) 

D,K and c are the medium density, conductivity and specific heat, respectively.  

Clearly,  Eq.9 can be given the actual form desired, including cases when the thermophysical 

properties varies between phases. 

The system of coupled non-linear equations (4) and (9) are then solved over the 

domain of interest, subjected to the appropriate initial and boundary conditions for the phase 

and temperature fields.  The S-L interface location can be determined a posteriori, simply by 

locating the points where the phase variable p crosses zero.  In this respect, the PF model is 

particularly suited for multidimensional solidification problems, since curvature and 

anisotropic effects are implicitly taken into account
9. 

 

 

VALIDATION OF PHASE-FIELD SOLUTIONS 

 

Benchmark quantitative tests were intensively made for the PF solutions
4,5,8,10, and 

they allow confidence in the numerical results for engineering applications.  The numerical 

method to solve Eqs. 7 and 9 can be as simple as an iterated finite-difference discretization 

over a fixed uniform grid, or it’s companion conservative control-volume scheme; those are 

detailed described elsewhere
4,5,10.   

As an example, we show in Fig. 4 the results for water solidification 

(Kl=5.64x10
-4 
kJ/msoC, Ks=2.24x10-

3 kJ/msoC, cl=4.2 kJ/kg
oC, cs=2.02 kJ/kg

oC, 

Dl=Ds=960 kg/m
3, L=333.4 kJ/kg), as compared to the analytical Newman solution1.  The 

domain length is taken l = 2cm, initially with uniform temperature Thot=10
oC.   Solidification 

takes place by imposing the boundary condition T(0,t)=Tcold=-5
oC for t>0.  In order to 

compare the numerical PF results with the semi-infinite slab similarity solution,  we started 

the computation after growth of an initial layer of solid, at x0=0.1cm, and maintain the 

temperature at the right end ( x = l ) at the values predicted by the Newman solution.  The PF 

kinetic undercooling was given, in this benchmark run, the small value of T0=-0.002oC (lower 
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values yield better emulation of the sharp classical interface problem, at the expense of 

increasing effort in computation time).  The interfacial tension, for the sake of this 

comparison,  is also a convenient numerical parameter, which in the case of a simple fixed-

grid discretization should correspond to an interfacial characteristic length  not smaller than 

the mesh interval – we choose >=1.25)x.  All computations were done by a 500 point mesh. 

 

 

 

 

 

 

 

 

 

        Fig. 4 – Interface progression in time and temperature history at x=0.48cm for a semi-infinite  

           slab solidification of water (no supercooling). 

 

THE SUPERCOOLED TWO-PHASE STEFAN PROBLEM 

 

A more stringent test, which is also better suited to the PF model, is the solidification 

from an initially supercooled melt (T(x,0)=Tinit<Tm, and T(0,t)=Ts<Tm for t>0).  This gives 

rise to the so-called “two-phase supercooled Stephan problem”, and it is classically modeled 

by imposing an S-L interface at T=Tm, which advances through the melt by heat release from 

the latent heat source.  In this case, heat transport is away from the interface in both directions 

(to the melt and to the solid), since the greatest temperature is at x='(t).   It is well-known that 

it is not possible, in more than one dimension, to maintain a flat stable interface in that 

situation11. In one-dimensional approximations (slab solidification), there is also a similarity 

analytical solution for semi-infinite domains2, which we transcribe here for convenience: 
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, where 8 is a root of the transcendental equation 
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"l, "s are the heat diffusivities in the liquid and solid phases ( = K/Dc),  with ls
/αα=ν . 

erf(x) is the error function and erfc(x)=1-erf(x). 

 

The above classical solution is valid whenever the liquid is not hypercooled, that is to 

say, if the latent heat release is enough to raise the temperature of the supercooled liquid from 

Tinit to Tm (which implies the condition 0 < Stinit < 1). 

Clearly, supercooled solidification poses a major difficulty for the traditional 

numerical methods, since there is not a well-defined enthalpy-temperature relationship in this 

case.  The front-tracking methods would have to rely in the condition that a liquid element 

would undergo solidification only when its temperature is raised to Tm and is about to be 

traversed by the solid-liquid interface – a somewhat clumsy condition to follow in the 

presence of more general, or time-dependent, boundary conditions or sources of heat. 

 

PHASE-FIELD SOLUTIONS TO THE SUPERCOOLED STEFAN PROBLEM 

 

The PF model applies naturally to supercooled solidification.  As before, we consider 

a 5cm slab of water initially at –10oC but still liquid, impose the fixed temperature –20oC at 

the wall x=0, and started solidification at t=0.   

It should be noted that the nucleation process at x=0, which started the solidification 

process at t=0, is not an issue here.  In fact, nucleation cannot be taken into account by a 

mean-field model (such the Phase-Field free-energy minimization, based on the Landau 

expansion to the second order, Eq.3).  Being a fluctuation process, nucleation could be 

simulated within the PF model by introducing noise in the phase evolution equation. 
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The results of the PF calculations were compared to the similarity solutions after an 

initial layer of solid was already grown up to x0=0.5cm.  The boundary temperature at x=l was 

kept time-dependent, equal to Tliquid(l,t) (Eq.10b). 

The results are shown in Figs.5-7, along with the numerical PF results for a 

supercooled solidification inside the finite domain [0,l] when T(l,t) is kept constant at -10
o
C. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig. 5 – Interface progression in time, supercooled slab of water solidification. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      Fig. 6 – Temperature fields at times 2000s and 4000s. 
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           Fig. 7 – Temperature history at the position 2,5cm. 

 
 

At this level of mesh refining, the PF numerical results differ from the analytical 

solution by less than 5% (relative error).  We therefore can be confident that the numerical 

solutions for the finite domain case are reliable enough for engineering applications. 

All runs were made with a 500 point mesh. No code optimization were done in the 

numerical implementation, which was a simple iterated totally-implicit control-volume 

discretization, with linearized source terms
10. The convergence of the numerical scheme was 

carefully tested and reported elsewhere
4,10
.  A typical run takes an hour of CPU time in a 

250MHz Pentium MMX PC, running code generated by the GNU-C compiler under 

DOS/Windows 95. 

It is worth noting that numerical PF implementations require a somewhat refined 

mesh around the interface (where ∇p is high), if results are to be referred to the (still in wider 

acceptance) classical sharp interface models.  Fig.8 shows the predicted interface temperature 

for distinct mesh sizes, where it can be seen that the S-L temperature stabilizes to T0=-0.002 

only for higher mesh resolutions. 
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 Fig. 8 – Temperature at the S-L interface as obtained by the PF calculations 
                 for increasing mesh sizes. 

 
 

 

CONCLUSIONS AND COMMENTS 

 

The PF model, while providing a better physical description of solidification 

dynamics, also allows for a numerical implementation avoiding the explicit tracking of the 

solid-liquid interface.   The non-linear evolution equation for the phase parameter can be 

coupled to any other transport or constitutive law for the thermodynamic quantities involved 

in the solidification process.  Numerically, the PF technique has been shown to be as accurate 

as the more traditional sharp-interface descriptions, which frequently are based in ad-hoc 

assumptions about the interface dynamics. 

The parameters that govern the scales of the phase variable, namely, the kinetic 

coefficient and the surface tension, which in this work were taken merely as convenient 

numerical constants, can be matched to the actual medium physical values
12,  thus allowing 

for realistic simulations of generalized solidification processes (involving dendrite growth and 

facets, for instance).   

Current limitations of the phase-field descriptions are the artificial cutoff at short 

wavelengths due to the numerical discretization and the high computational effort required for 

two and three-dimensional calculations.  There are also some controversy about the 

thermodynamic consistency of the PF functional, particularly when coupled to non-

conservative transport, viscid convection, or other types of phase transitions.  But all of those 

issues are likely to be amenable to better theoretical and numerical techniques and are topics 

of active research. 
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