PHASE-FIELD SOLUTIONS FOR THE CLASSIC ONE-DIMENSIONAL
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ABSTRACT: Results for the two-phase
supercooled Stefan problem on a finite domain
are obtained by a numerical Phase-Field (PF)
model. The PF results are shown to be made as
close as desired to the classical sharp-interface
similarity solution, in the semi-infinite domain
limit. A basic engineering introduction to PF
modeling and guidelines for a simple fixed-grid
computational implementation are also given.

INTRODUCTION

The numerical modeling of solidification processes has to deal with the location of the
solid-liquid (SL) interface, which is not known in advance. The prototype of such “free-
boundary” problems is the so-called Stefan solidification, which consists of a slab of a pure
substance initially at a definite state (e.g., liquid), that undergoes phase-change as heat is

exchanged with the surrounding medium across the wall at x=0 (see Fig.1).
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Fig.1 - One-dimensional (Stefan) slab solidification. Analytical solutions are known
for simple boundary and initial conditions and when the domain [0, ] is
semi-infinite (| — o0).

For semi-infinite domains, the Stefan solidification problem admits a solution within

the similarity class x/ Vi ; as a consequence, the S-L interface progression is given by
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F(t)zb\/{ , where the constant b is a root of a well-known transcendental equation (the
Newman solution'?).  There is no analytical solution for the finite slab solidification, and/or
when the thermophysical properties of the medium are not constant; for those cases, semi-
analytical or numerical methods are required.

There are two broad classes of traditional numerical approaches to deal with free-
boundary problems, namely, (1) the front-tracking techniques, where the position of the
interface is explicitly followed during the discrete time-integration, and (2) the so-called
“enthalpy” technique and its variants, where the problem is re-formulated in terms of a global
variable that does not explicitly depends on the local phase — like using the energy (or the
enthalpy) instead of temperature as the main variable in solidification models. A third
alternative - the Phase Field (PF) model - gained recognition during the last decade, which
allows for a better physical formulation of the phase-change problem; it introduces an “order
parameter” to indicate the phase state, working along the ideas of the phase transition theories
far from the critical point.

The limitations of the traditional “enthalpy” techniques become apparent even in their
simplest formulations. For a pure substance, with constant thermophysical properties, the
enthalpy H as a function of temperature T can be simply defined as:

c,(r'-1)) for T<T_ (solid state)
H = (Eq. 1)

c(-1,)+L for T>T_ (liquid state)

, where Ty, 1s the melting temperature, L is the latent heat of fusion and cg; are the
specific heats of the solid and liquid phases, respectively. Now the enthalpy flux (for
constant-volume systems, the difference between enthalpy end energy is immaterial) is
determined from the temperature distribution via the Fourier law, so the traditional heat

conduction equation can be written as

%:VZT (Eq.2)

Given a temperature distribution at time t, we can therefore update the enthalpy for
time t+At by Eq.2, and then invert Eq.1 to find the new temperature field. Note that Eq.1, in
fact, states that the phase state is a unique function of temperature, and that is precisely the

weakness of the enthalpy model — since it is a common fact that materials can be supercooled
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or superheated: experience shows that there can be a liquid phase for T<Ty, and (more rarely)
solid for T>Tp,.

It is to be noted that the same limitations do apply for the majority of the “front-
tracking” techniques, since they assume an explicit relationship between the local temperature
and the phase state.

To overcome that fundamental difficulty we must formulate the phase change as a
dynamical process which depends on the local free-energy, which in turn is a function of
temperature, in a manner that favors (but not determine) the liquid state for T>Ty,. That is

exactly the main idea of the Phase-Field (PF) model, which we now briefly describe.

THE PHASE-FIELD MODEL

Let a phase variable p(x,t) be introduced, the values of which describe the phase state
of the material. We choose the value +1 corresponding to liquid, and -1 to solid. The S-L
interface is defined by points at which p=0. In practice, there is always a transition layer of
width € between the solid and liquid phases(Fig.2), which can be made as small as desired, in

order to approximate a sharp interface.

liquid
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€

Fig.2 — The order parameter in the PF model describes a diffuse interface between
phases, with characteristic length €

Caginalp & Sokolowsky” and Fabbri & Voller* have shown that the use of a suitable
large numerical value for € does not compromise the solutions of the PF equations (that does,
however, introduce a cutoff for short wavelengths which could hinder a selection process in a
non-isotropic multidimensional medium — a pertinent issue for the theory of dendrite

fingering, for instance).
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In equilibrium, the spatial profile of p(x,t) minimizes the total free-energy F of the
system (or any other thermodynamically consistent functional). In terms of a first-order

expansion in the field p, and the temperature T, F is written as:
1
F - j{552|vp|2 +F(p, T)}cﬁr (Eq. 3)

, where F(p,T) is a double-well potential having local minima at p=t1, and € is a
characteristic length of order €.

Solidification (that is, the S-L interface progression) is driven by the potential term
F(p,T), which therefore should have the form depicted in Fig.3, exhibiting minima at p=+1,

corresponding to equilibrium solid and liquid states.

F(p.T)

Fig. 3 — The phase-field potential, with temperature-dependent relative minima
height positions. T, is the melting temperature.

Minimization of the functional F (Eq.3) with respect to the order parameter p,
followed by a relaxation-time approximation’ with characteristic time o, gives the evolution

equation

e P =gy &
o o

Eq. 4 can be given the following physical interpretation’. The derivative -0F/dp plays

(Eq.4)

the role of a thermodynamic driving force for phase change, with respect to the coordinate p.
At a temperature T equal to the equilibrium melting temperature Tp,, the two minima at p=+1
have exactly the same energy; for T>Ty,, the minimum at p=+1 has lower energy (the liquid
state is the stable state, the solid state being a possible metastable state above the equilibrium

melting temperature), and conversely for T<T,,. The natural tendency of the system is to
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relax towards equilibrium, with respect to spatial fluctuations in the phase value p(x,t); this is
in fact the origin of surface tension effects, and it is accounted for by the term £*V?p. When
the system is at equilibrium, every point of it is sitting in a minimum of F(p,x), at p=+1 or -1,
except at some possible transition layers where the value of p undergoes steep changes; if
those layers are not moving, then, locally, the driving force -JF/dp balances exactly the
surface tension term. In the event that the system is out of equilibrium, the time evolution of
p(x,t) is assumed to be proportional to the imbalance between the potential and the surface
tension energy - this leads to a velocity-dependent term which includes, in a natural way, the
kinetic relaxation during front progression.

The diffuse interface theory of Allen & Cahn® relates the surface tension o to the

potential F and to the characteristic length &, as follows:

c = 2 J‘«/F(p, T) dp (Eq. 5)

At this level of macroscopic modeling of solidification, the potential F(p,T) can be
chosen by numerical convenience, provided it has the qualitative features depicted in Fig.3.
We follow Kobayashi’, and write F(p,T) as a fourth degree polynomial with fixed minima at
+1:

P
F(p,T) = W J‘(l — )¢ +m(T))dd (Eq. 6)
i

W is an arbitrary constant (related to the entropy scale), and the temperature-
dependent term m(T) must satisty [m(T)|<1, in order to have dF/dp with three distinct roots.
We choose a simple linear form (from here on, we assume Tp,=0):

m(T) =yT (Eq.7)

, restricting y to a maximum value such that —1<m<+1 for every possible value of
temperature the system may exhibit.

A quick asymptotic expansion of the solutions of Eq.4 around an interface then shows

that the temperature at the interface is proportional to the front velocity v=dI'/dt,

T(x=I) = —Gj\‘;jv (Eq. 8)

Eq.8 shows that the PF model incorporates automatically the kinetic effect at the SL

front, and the temperature of a moving interface must be lower than the equilibrium
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temperature Tp,. Non-linear kinetic effects can also be accounted for'’, and a non-linear
relaxation-time model evolution is also possible®.

Eq.4 for the phase field must be coupled to a heat transport equation for temperature,
which presently is simply the usual Fourier law with a source term to account for the latent
heat release at the interface:

pc%Jr%pLgt—p = KV°T (Eq.9)

p,K and ¢ are the medium density, conductivity and specific heat, respectively.
Clearly, Eq.9 can be given the actual form desired, including cases when the thermophysical
properties varies between phases.

The system of coupled non-linear equations (4) and (9) are then solved over the
domain of interest, subjected to the appropriate initial and boundary conditions for the phase
and temperature fields. The S-L interface location can be determined a posteriori, simply by
locating the points where the phase variable p crosses zero. In this respect, the PF model is

particularly suited for multidimensional solidification problems, since curvature and

anisotropic effects are implicitly taken into account’.

VALIDATION OF PHASE-FIELD SOLUTIONS

458,10
, and

Benchmark quantitative tests were intensively made for the PF solutions
they allow confidence in the numerical results for engineering applications. The numerical
method to solve Eqs. 7 and 9 can be as simple as an iterated finite-difference discretization
over a fixed uniform grid, or it’s companion conservative control-volume scheme; those are
detailed described elsewhere®>*.

As an example, we show in Fig. 4 the results for water solidification
(K=5.64x10"kJ/ms°C, K=2.24x10-* kJ/ms°C, c=4.2 kJ/kg°C, ¢=2.02 kJ/kg°C,
p=ps=960 kg/m’, 1=333.4 kl/kg), as compared to the analytical Newman solution'. The
domain length is taken | = 2cm, initially with uniform temperature Tyo=10°C. Solidification
takes place by imposing the boundary condition T(0,t)=Tee=-5°C for t>0. In order to
compare the numerical PF results with the semi-infinite slab similarity solution, we started
the computation after growth of an initial layer of solid, at x¢=0.lcm, and maintain the

temperature at the right end ( x = | ) at the values predicted by the Newman solution. The PF

kinetic undercooling was given, in this benchmark run, the small value of T°=-0.002°C (lower
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values yield better emulation of the sharp classical interface problem, at the expense of
increasing effort in computation time). The interfacial tension, for the sake of this
comparison, is also a convenient numerical parameter, which in the case of a simple fixed-
grid discretization should correspond to an interfacial characteristic length not smaller than

the mesh interval — we choose £&=1.25Ax. All computations were done by a 500 point mesh.
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Fig. 4 — Interface progression in time and temperature history at x=0.48cm for a semi-infinite
slab solidification of water (no supercooling).

THE SUPERCOOLED TWO-PHASE STEFAN PROBLEM

A more stringent test, which is also better suited to the PF model, is the solidification
from an initially supercooled melt (T(x,0)=Tii<Tm, and T(0,t)=Ts<Tp, for t>0). This gives
rise to the so-called “two-phase supercooled Stephan problem”, and it is classically modeled
by imposing an S-L interface at T=T,, which advances through the melt by heat release from
the latent heat source. In this case, heat transport is away from the interface in both directions
(to the melt and to the solid), since the greatest temperature is at x=I'(t). It is well-known that
it is not possible, in more than one dimension, to maintain a flat stable interface in that
situation'’. In one-dimensional approximations (slab solidification), there is also a similarity

analytical solution for semi-infinite domains”, which we transcribe here for convenience:

I'(t) = 2'/\\/oc_st

erf (

21/
T,.x,t)=T,+(T, - , for 0 <x<T(t) (Eq. 10a)
Cef(h) (k)
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erfc(

2\/_

, for T'(t) <x<w 10b
erfe(v) or T <x ( 106)

Tliqid x,0) =Ty +(T, —Tyy)————

, where A is a root of the transcendental equation

St, St o C 100

A/me" erf(L) (vx)\/_ e erfo(vah)
and the Stefan numbers

T -T
st =& Ta = L) o
L L

(  10d)

oy, 0 are the heat diffusivities in the liquid and solid phases ( = K/pc), with v=,jo /a, .

erf(x) is the error function and erfc(x)=1-erf(x).

The above classical solution is valid whenever the liquid is not hypercooled, that is to
say, if the latent heat release is enough to raise the temperature of the supercooled liquid from
Tinit to T (which implies the condition 0 < Stjpi < 1).

Clearly, supercooled solidification poses a major difficulty for the traditional
numerical methods, since there is not a well-defined enthalpy-temperature relationship in this
case. The front-tracking methods would have to rely in the condition that a liquid element
would undergo solidification only when its temperature is raised to Ty and is about to be
traversed by the solid-liquid interface — a somewhat clumsy condition to follow in the

presence of more general, or time-dependent, boundary conditions or sources of heat.
PHASE-FIELD SOLUTIONS TO THE SUPERCOOLED STEFAN PROBLEM

The PF model applies naturally to supercooled solidification. As before, we consider
a Scm slab of water initially at —10°C but still liquid, impose the fixed temperature —20°C at
the wall x=0, and started solidification at t=0.

It should be noted that the nucleation process at x=0, which started the solidification
process at t=0, is not an issue here. In fact, nucleation cannot be taken into account by a
mean-field model (such the Phase-Field free-energy minimization, based on the Landau
expansion to the second order, Eq.3). Being a fluctuation process, nucleation could be
simulated within the PF model by introducing noise in the phase evolution equation.
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The results of the PF calculations were compared to the similarity solutions after an
initial layer of solid was already grown up to x¢=0.5cm. The boundary temperature at x=| was
kept time-dependent, equal to Tiguia(l,t) (Eq.10b).

The results are shown in Figs.5-7, along with the numerical PF results for a

supercooled solidification inside the finite domain [0,1] when T(l,t) is kept constant at -10°C.
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Fig. 5 — Interface progression in time, supercooled slab of water solidification.
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Fig. 6 — Temperature fields at times 2000s and 4000s.
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Fig. 7 — Temperature history at the position 2,5cm.

At this level of mesh refining, the PF numerical results differ from the analytical
solution by less than 5% (relative error). We therefore can be confident that the numerical
solutions for the finite domain case are reliable enough for engineering applications.

All runs were made with a 500 point mesh. No code optimization were done in the
numerical implementation, which was a simple iterated totally-implicit control-volume
discretization, with linearized source terms'’. The convergence of the numerical scheme was
carefully tested and reported elsewhere™'’.
250MHz Pentium MMX PC, running code generated by the GNU-C compiler under

DOS/Windows 95.

A typical run takes an hour of CPU time in a

It is worth noting that numerical PF implementations require a somewhat refined
mesh around the interface (where Vp is high), if results are to be referred to the (still in wider
acceptance) classical sharp interface models. Fig.8 shows the predicted interface temperature
for distinct mesh sizes, where it can be seen that the S-L temperature stabilizes to T’=-0.002

only for higher mesh resolutions.
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Fig. 8 — Temperature at the S-L interface as obtained by the PF calculations
for increasing mesh sizes.

CONCLUSIONS AND COMMENTS

The PF model, while providing a better physical description of solidification
dynamics, also allows for a numerical implementation avoiding the explicit tracking of the
solid-liquid interface. = The non-linear evolution equation for the phase parameter can be
coupled to any other transport or constitutive law for the thermodynamic quantities involved
in the solidification process. Numerically, the PF technique has been shown to be as accurate
as the more traditional sharp-interface descriptions, which frequently are based in ad-hoc
assumptions about the interface dynamics.

The parameters that govern the scales of the phase variable, namely, the kinetic
coefficient and the surface tension, which in this work were taken merely as convenient
numerical constants, can be matched to the actual medium physical values'?, thus allowing
for realistic simulations of generalized solidification processes (involving dendrite growth and
facets, for instance).

Current limitations of the phase-field descriptions are the artificial cutoff at short
wavelengths due to the numerical discretization and the high computational effort required for
two and three-dimensional calculations. There are also some controversy about the
thermodynamic consistency of the PF functional, particularly when coupled to non-
conservative transport, viscid convection, or other types of phase transitions. But all of those
issues are likely to be amenable to better theoretical and numerical techniques and are topics

of active research.
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