
FÍSICA FUNDAMENTAL

(revisão e reforço para a 2ª prova) 2º sem. 2014 Prof. Fabbri

INSTRUÇÕES para a prova:

- É permitido o uso da calculadora científica simples. Não são permitidas calculadoras gráficas, algébricas, ou que tenham qualquer tipo de comunicação de dados com ou sem fio.
- É proibido emprestar a calculadora durante a prova.
- Apenas resultados numéricos corretos serão considerados na correção
- A questão é considerada INCORRETA se o procedimento for incorreto, mesmo que o resultado numérico coincida com a resposta certa.
- Não serão permitidas perguntas durante a prova, exceto sobre algum texto ilegível.
- A prova deve ser feita sem consulta. <u>É proibido o uso do celular</u>.
- 1ª QUESTÃO) Na montagem, verifica-se que os corpos se deslocam sob a ação da gravidade, puxados pela esfera de massa m. O atrito entre o bloco M, de 8kg, e o solo, é desprezível. Qual o valor de m para que a aceleração dos blocos seja metade da aceleração da gravidade?

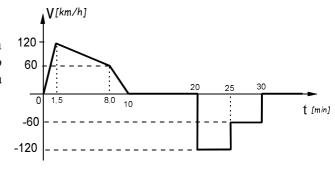
 Resp.: 8kg

Reforço: Qual o máximo valor de m, se o fio suporta até 60N de tensão? Resp.: 24kg

2ª QUESTÃO) Na figura, uma bolinha é impelida por uma mola, e sobe a rampa PA.

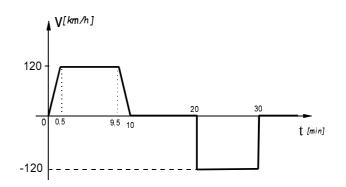
utilizar $g \cong 10 \text{m/s}^2$

Para que a bolinha de 150g consiga chegar ao topo A da rampa, que está uma altura H=60cm, verifica-se que a mola deve ser comprimida, no mínimo, 5cm. Qual a constante elástica da mola?


Despreze o atrito e a energia cinética de rotação da bolinha.

Resp.: 0,72kg/cm

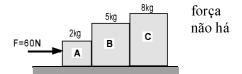
Reforço: Com que velocidade a bolinha chega ao pé da rampa? Resp.: 12,5km/h


3ª QUESTÃO) Um automóvel faz um percurso de modo que a sua velocidade varia com o tempo conforme mostra o gráfico ao lado. Se a posição inicial do mesmo é no Km12, qual a sua posição final?

Resp.: 9,25Km

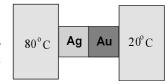
Reforço 1: Se o automóvel gastou 4 litros de gasolina, qual foi seu consumo médio? Resp.: 6,8km/l

- **Reforço 2:** Um automóvel faz um percurso de modo que a sua velocidade varia com o tempo conforme mostra o gráfico ao lado.
 - Qual foi a velocidade média nos dez primeiros minutos?
 Resp.: 114Km/h
 - Qual o deslocamento total do automóvel
 Resp.: −1Km
 - Se o consumo do automóvel é de sete quilômetros por litro, calcule a quantidade total de combustível consumida. Resp.: 5,6 litros



4ª QUESTÃO) Qual o custo mensal de um banho diário de meia hora a 48°C, em um chuveiro com vazão de quinze litros por minuto? A temperatura média ambiente é de 18 °C, e o quilowatt-hora custa cerca de quarenta e cinco centavos. *Resp.:R\$ 212,00 (!)*

Reforço: Quanto se deve durar cada banho, no máximo, para se gastar 50 reais por mês? Resp.: 7min


<u>5^a QUESTÃO</u>) Qual a força que o bloco A exerce sobre o bloco B? Qual a que o bloco B exerce sobre o bloco C? Suponha que atrito entre os blocos e o solo.

Resp.:52N; 32N

Reforço: Repita, trocando as posições dos blocos B e A. Resp.:40N; zero.

6ª QUESTÃO) A barra de prata tem comprimento de 1,5cm, e a de ouro 0,8cm. Ambas têm a mesma área de seção transversal, 2mm×3mm. A condutividade térmica da prata é 429W/(m.K) e a do ouro, 318W/(m.K). Desprezando perdas laterais e de contato, qual a temperatura na interface entre as barras? Qual a potência térmica transmitida pelas mesmas? (resp.:45°C; 6W)

Reforço: Repita, trocando as posições das barras. (resp.: 55°C; 6W)

7ª QUESTÃO) Uma pessoa gira uma pedra amarrada a um fio leve e flexível de 2,0m de comprimento, na horizontal, acima da cabeça. Suponhamos que o plano de giro seja aproximadamente horizontal. Qual deve ser a velocidade de giro para que a tensão no fio seja cinco vezes maior do que o peso da pedra? *utilizar g* ≅ 10m/s²

 $Resp.:10m/s \cong 48rpm$

Reforço: Qual a tensão no fio para fazer a pedra girar a 80rpm, se a massa da pedra é 200g?

Resp.:28N ≅ 2,8kgm

8ª QUESTÃO) Em um ensaio para medir a constante elástica de uma mola, obteve-se a tabela abaixo, onde consta a quantidade distendida Δx em função da massa que a mola suporta em equilíbrio.

M [kg]	Δx [cm]	y-A-Bx
0	0	
2,12	5,3	
3,24	7,9	
4,33	11,2	
5,00	12,6	
6,08	15,0	

Estime a constante de mola K, em kg/cm, supondo que a mola é linear, e, portanto, $M = K.\Delta x$.

Resp.: (0.399 ± 0.008) kg/cm

Utilize as fórmulas de ajuste linear, dadas abaixo (sem considerar as incertezas nas medidas).

Ajuste linear y = A + Bx aos pontos (x_i, y_i) , i = 1, N:

$$\Delta = N \sum x^2 - \left(\sum x\right)^2 \qquad A = \frac{\sum x^2 \sum y - \sum x \sum xy}{\Lambda} \qquad B = \frac{N \sum xy - \sum x \sum y}{\Lambda}$$

Os valores de A e B podem ser encontrados de modo mais fácil utilizando sua calculadora no modo de regressão (REG). Os intervalos de confiança para os valores dos parâmetros A e B são calculados como:

$$\sigma_{y} = \sqrt{\frac{1}{N-2}\sum (y-A-Bx)^{2}}$$

$$\Delta A = \sigma_{y}\sqrt{\frac{\sum x^{2}}{\Delta}}$$

$$\Delta B = \sigma_{y}\sqrt{\frac{N}{\Delta}}$$

Reforço: Repita os cálculos para o ensaio abaixo:

M [kg]	Δx [cm]
0	0
1,00	0,5
2,00	0,95
3,12	1,62
4,22	2,00
5,80	3,11

Resp.: (1.89 ± 0.09) kg/cm