Cálculo Aplicado

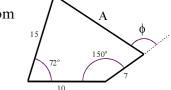
Exercícios de reforço para a primeira prova

2° sem 2013 Prof. Fabbri

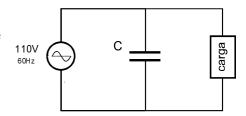
Exercício 1: Considere, no plano complexo, o triângulo de vértices 3i, $e^{i\pi/3}$ e $e^{i2\pi/3}$. Qual a área desse triângulo? Resp.: 1,067

Reforço: Encontre o perímetro do triângulo de vértices 2 + 3i, $3e^{i\pi/4}$ e $2e^{-i\pi/4}$. Resp.: 8,945

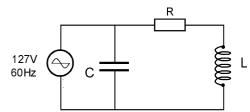
Exercício 2: No plano complexo, as soluções da equação z^8 1 são vértices de um octógono. Qual a medida do lado desse octógono?


Reforco: As soluções de $z^7 = 1+i$ são vértices de um heptágono. Qual o lado desse heptágono? Resp. 1,227

Calcule a distância A e o ângulo \(\phi \), utilizando operações com Exercício 3: números complexos.

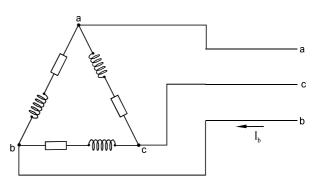

Resp.: 15,70 e 107°

Reforço: Repita para a figura:


Resp.: 12,9 e 70°

Exercício 4: A corrente através da carga ligada à rede de 110V (rms) é de 15A, e é indutiva com fator de potência 0.7. Calcule o valor do capacitor, de modo que o fator de potência visto pela fonte seja 1. Resp.: 258μF

<u>Reforço</u>: No circuito ao lado, a reatância do indutor é 150Ω e o resistor é de 200Ω . Encontre o valor do capacitor para que a tensão e a corrente pela fonte estejam em fase. Resp.: 6,4µF



Exercício 5: No circuito trifásico ao lado, temos

$$V_{ab} = 220 \ 0^{\circ}$$
 e $V_{bc} = 220 \ -120^{\circ}$

Os resistores são de 9Ω e os indutores tem reatância de 12Ω . Calcule a amplitude da corrente de fase I_h .

Resp. 25,4A

Reforço: Qual o valor e a fase de V_{ca}? Resp. 220 120°

Exercício 6: Exercício 3(c) da segunda série.

Exercício 7: Interpretação de texto. A questão será mais facilmente respondida se o aluno tem refletido sobre os textos disponíveis pelo programa de leitura da USF.