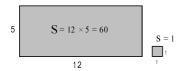
© 2004-13

1° Semestre de 2013 Prof. Maurício Fabbri

<u>1^a Série de Exercícios</u> : *Integração*

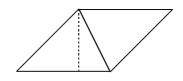
O CÁLCULO DE ÁREAS

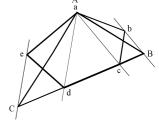
(I) Área é a medida de um espaço de duas dimensões. O valor da área significa quantas vezes esse espaço é maior do que uma medida padrão. Disso decorre que a área de uma região retangular é simplesmente o produto da medida dos lados (base × altura):



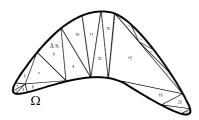
Note que não é necessário que os lados tenham medidas inteiras. A área de um retângulo de lados 1,34 e 2,59 é 3,4706. (é importante que voce reflita e se convença claramente disto!). A situação fica um pouco mais complicada se alguma medida for irracional (por exemplo, $\sqrt{2}$ ou π), mas com um pouco mais de reflexão voce se convencerá de que as contas continuam válidas mesmo nesses casos.

(II) É fácil demonstrar que a área de um paralelogramo é também o produto de um de seus lados pela distancia entre os outros dois (altura), e então que a área do triângulo é metade do produto entre a base e a altura. A área de uma figura plana com lados retos pode ser facilmente encontrada dividindo-a em triângulos. Pode-se prontamente desenhar um triângulo com a mesma área de uma figura plana qualquer que tenha lados retos.





(III) A área de uma região que não é delimitada apenas por segmentos de reta deve ser encontrada por um processo de limite: dividimos a figura em regiões cada vez menores e mais numerosas, e o valor da área é o limite da soma dessas pequenas áreas quando o número delas fica cada vez maior. Os computadores calculam o valor da área de uma região qualquer por aproximação, dividindo a figura em um número adequado de figuras menores com lados retos.



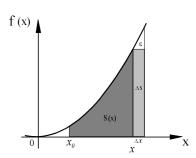
$$S \cong \sum \Delta S_{_{i}}$$

$$S = \lim_{\stackrel{i \to \infty}{\Delta S_i \to 0}} \sum \Delta S_i = \int_{\Omega} \! dS$$

(IV) A área delimitada pelo gráfico de uma função conhecida pode ser encontrada usando o cálculo diferencial, como segue.

Seja S(x) a área sob o gráfico da função f(x) a partir de um ponto de referência x_0 , até o ponto x. Se x aumenta de Δx , a área S(x) aumenta de ΔS . Um valor aproximado de ΔS é a área do retângulo de lados Δx e f(x), de modo que $\Delta S \cong (\Delta x).f(x)$. Supondo que o erro ε dessa aproximação tenda a zero quando Δx fica cada vez menor, no limite $\Delta x \to 0$ teremos $\frac{dS}{dx} = f(x)$. A função S(x) fica determinada pelas

 $\Delta x \rightarrow 0$ teremos $\frac{dS}{dx} = f(x)$. A função S(x) fica determinada pelas relações:



$$\begin{cases} \frac{dS}{dx} = f(x) \\ S(x_0) = 0 \end{cases}$$

Dizemos que S(x) satisfaz um problema de valor inicial. S(x) satisfaz a equação diferencial S'(x)=f(x) e a condição inicial $S(x_0)=0$.

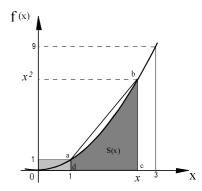
Portanto, a derivada da função S(x) é a função conhecida f(x). S(x) é chamada de <u>primitiva</u> de f(x).

<u>EXEMPLO</u>: Seja encontrar a área sob o gráfico de $f(x) = x^2$ entre x=1 e x=3.

Definindo S(x) a área a partir de x=1 até x, teremos $\begin{cases} \frac{dS}{dx} = x^2 \\ S(1) = 0 \end{cases}.$

Portanto, $S(x) = \frac{x^3}{3} + K$, e o valor de K deve ser -1/3 para que

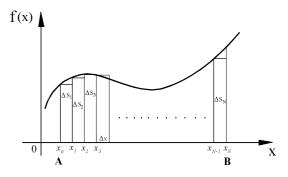
S(1)=0. Logo, S(x) =
$$\frac{x^3}{3} - \frac{1}{3}$$
 e S(3) = 26/3 \approx 8,67. Note que a área



pedida é aproximadamente 8,7 vezes a área do retângulo 1×1 marcado na figura, e é menor que a área do trapézio abed, que vale 10.

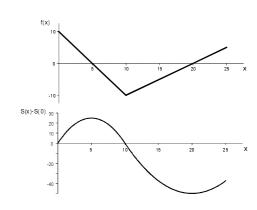
(V) (o cálculo de áreas como limites de somas infinitas) Para calcular a área S sob o gráfico de uma função f(x) entre x=A e x=B, (1) dividimos S em um número N de pequenas áreas ΔS_i ; (2) calculamos cada pequena área de modo que o erro tenda a zero quando ela ficar cada vez menor, e (3) calculamos o limite da soma das áreas ΔS_i à medida em que o número delas aumenta e cada uma fica cada vez menor. Esse processo está esquematizado abaixo quando dividimos o intervalo [A,B] por uma malha uniforme de largura $\Delta x = \frac{B-A}{N}$.

$$\begin{split} S &= \Delta S_1 + \Delta S_2 + ... + \Delta S_N = \sum_{i=1}^N \Delta S_i \\ S &\cong f(x_0).\Delta x + f(x_1).\Delta x + ... + f(x_{N-1}).\Delta x = \sum_{i=1}^{N-1} f(x_i).\Delta x \\ S &= \lim_{\Delta x \to 0} \sum_{i=1}^{N-1} f(x_i).\Delta x = \int_{0}^{B} f(x).dx \end{split}$$



Riemann desenvolveu um método que permite obter o valor da área mesmo em casos onde a função f(x) apresenta um número finito de descontinuidades finitas ("saltos" finitos) no intervalo [A,B]; por esse motivo, a integral usualmente empregada é chamada de "integral de Riemann".

(VI) A área, como definida acima, tem sinal algébrico, uma vez que ΔS tem o mesmo sinal de f(x). Na figura ao lado, o gráfico inferior representa o valor da área sob f(x) a partir do ponto x=0. Observe que $f(x)=\frac{dS}{dx}$.



O TEOREMA FUNDAMENTAL DO CÁLCULO

$$f(B) - f(A) = \int_{A}^{B} f'(x) dx$$

 \Rightarrow para calcular a integral de f(x), "basta" encontrar sua primitiva e calcular a variação desta entre os extremos de integração.

Exercício 1: Calcule a área sob o gráfico de $f(x) = x^2$ entre x = 2 e x = 5.

Algumas primitivas são fáceis de encontrar, por exemplo:

$$\int x^N dx = \frac{x^{N+1}}{N+1} \quad (N \neq -1) \qquad ; \quad \text{para $N=0$ obtemos } \int dx = x \quad (\delta bvio \ !!!)$$

$$\int \frac{1}{x} dx = \ln |x| \qquad \qquad \int e^{\alpha x} dx = \frac{e^{\alpha x}}{\alpha} \qquad \qquad \int \text{sen}(x) dx = -\cos(x) \qquad \qquad \int \cos(x) dx = \text{sen}(x)$$

(as primitivas são definidas a menos de uma constante de integração)

PROPRIEDADES

$$\int\limits_{A}^{B} + \int\limits_{B}^{C} = \int\limits_{A}^{C} , \, e, \, portanto, \, \int\limits_{a}^{b} f(x) dx = -\int\limits_{b}^{a} f(x) dx$$

$$\int [\alpha f(x) + \beta g(x)] dx = \alpha \int f(x) dx + \beta \int g(x) dx \qquad \textit{(linearidade)}$$

Exercício 2: Calcule a área sob o gráfico das funções no intervalo indicado. Quando a resposta não for um número comum, escreva-a com três significativos.

(a)
$$f(x) = 2x-1$$
 entre $x = 0$ e $x = 3$

(b)
$$f(x) = x^2 - 3x + 2$$
 entre $x = 1$ e $x = 2$

(c)
$$f(x) = 50e^{-2x}$$
 entre $x = 0$ e $x = 1$

(d)
$$h(t) = 10\cos(\pi t/5)$$
 entre $x = 0$ e $x = 2$

(e)
$$v(t) = 20e^{-t/4}$$
 entre $t = 0$ e $t = 8$

(f) w(x) =
$$\frac{5}{x}$$
 entre x = 1 e x = 2

(g)
$$g(x) = \sqrt{x}$$
 entre $x = 0$ e $x = 1$

USO DE TABELAS

Encontrar a primitiva pode exigir uma boa dose de arte, técnica e esperteza matemática. Em um bom número de casos importantes, nem sequer é possível escrever a primitiva em termos de funções elementares. As tabelas de integrais listam as primitivas conhecidas que são mais importantes.

Exercício 3: Sabendo que $\int e^{ax} \cos(bx) dx = \frac{a \cos(bx) + b \sin(bx)}{a^2 + b^2} e^{ax}$ encontre, com três significativos,

(a) a área sob a função
$$f(t) = 20e^{-3t}\cos(3\pi t)$$
 entre $t = 0$ e $t = 1$

(b) a área total sob a função
$$f(t) = 5e^{-20t}cos(10\pi t)$$
 para $t > 0$ (entre $t = 0$ e $t \rightarrow \infty$)

Exercício 4: Encontre a área sob $f(t) = \frac{10t}{t^3 + 20}$ para t > 0 (entre t = 0 e $t \rightarrow \infty$), com três significativos.

Dado (tabela):
$$\int_{0}^{\infty} \frac{x^{m}}{x^{n} + a^{n}} dx = \frac{\pi a^{m+1-n}}{n \cdot sen \left[\frac{(m+1)\pi}{n}\right]} \qquad (0 < m+1 < n)$$

Exercício 5: Calcule $20 \int_{0}^{\pi/2} \sin^{8}(t) dt$ com três significativos, sabendo que

$$\int_{0}^{\pi/2} \sin^{2m}(x) dx = \int_{0}^{\pi/2} \cos^{2m}(x) dx = \frac{1.3.5...(2m-1)}{2.4.6...(2m)} \frac{\pi}{2}$$

TÉCNICA DE INTEGRAÇÃO POR MUDANÇA DE VARIÁVEL

Muitas integrais podem ser transformadas em outras mais simples através de uma mudança na variável de integração.

Exercício 6: Calcule $I = \int_{0}^{\pi/2} e^{\text{senx}} \cos(x) dx$ com três significativos, utilizando a transformação u = sen(x).

Exercício 7: Calcule $I = \int_{0}^{\pi/4} \cos^4(2x) dx$ com três significativos, fazendo u = 2x. (veja dado do Exercício 5)

Exercício 8: Calcule $I = 10 \int_{0}^{\pi/2} sen^{3}(x) cos(x) dx$ com três significativos, utilizando a transformação u = sen(x).

Exercício 9: Calcule $I = \int_{0}^{\pi/2} \sqrt{1 + \sin^2 x} \, \sin(2x) \, dx$ com três significativos, fazendo $u = 1 + \sin^2(x)$ e lembrando que $\sin(2x) = 2\sin(x)\cos(x)$.

A INTEGRAL DE 1/x TÉCNICA DAS FRAÇÕES PARCIAIS

Exercício 10: Obtenha o valor das integrais abaixo com três significativos:

(a)
$$\int_{3}^{4} \frac{5}{x-2} dx$$
 (b) $\int_{-7}^{-6} \frac{10}{x+5} dx$

Exercício 11: (a) Escreva $f(x) = \frac{2}{x(x-1)}$ na forma $f(x) = \frac{A}{x} + \frac{B}{x-1}$ (encontre A e B).

- (b) Encontre a área sob o gráfico de f(x) entre x = 1,5 e x = 2 com três significativos.
- (c) Encontre a área sob o gráfico de f(x) entre x = 0.2 e x = 0.8 com três significativos.
- (d) Encontre a área sob o gráfico de f(x) entre x = -0.6 e x = -0.2 com três significativos.

Exercício 12: Calcule $\int_{-1,8}^{-0.9} \frac{10}{x(x-1)(x+2)} dx$ com três significativos.

A TÉCNICA DE INTEGRAÇÃO POR PARTES

Da regra de derivação do produto, podemos deduzir a seguinte igualdade:

$$\int u dv = uv - \int v du$$

Isto pode ser aplicado no cálculo de integrais aonde o integrando é um produto de duas funções, uma das quais tem uma derivada simples, e a outra tem uma primitiva simples. A idéia é transformar a integral em outra mais fácil.

Exercício 13: Calcule $\int_0^1 xe^x dx$, por partes, utilizando u = x e $dv = e^x dx$.

Exercício 14: Mostre que $\int \ln(x) dx = x \ln(x) - x$.

Primeiro aplique a transformação $u = \ln(x)$, e em seguida a integração por partes análoga ao exercício 13.

Exercício 15: Calcule $\int_{0}^{\pi/3} x \operatorname{sen}(x) dx$, por partes, utilizando u = x e $dv = \operatorname{sen}(x) dx$. (três significativos)

Exercício 16: Calcule $\int_{0}^{\infty} t^2 e^{-2t} dt$, aplicando a técnica de integração por partes duas vezes em seguida. (três significativos)

APLICAÇÕES DO CÁLCULO INTEGRAL

- (VII) Se x(t) representa a posição de um móvel, então sua velocidade é $v = \frac{dx}{dt}$ e a aceleração é $a = \frac{dv}{dt}$. Portanto, dx = v.dt e dv = a.dt. A área sob o gráfico de $v \times t$ é o deslocamento sofrido pelo móvel e a área sob o gráfico de $v \times t$ é a mudança de velocidade no intervalo considerado.
- Exercício 17: Um automóvel se desloca a partir do instante t = 0 de modo que sua velocidade v, em km/h, varia com o tempo t em minutos de acordo com v = 4.8t(10-t). Qual a distância total percorrida nos primeiros dez minutos? (cuidado com as unidades !!!) reposta com três significativos –
- (VIII) Se $\phi(t)$ é a vazão de água por um cano, então $\phi = \frac{dq}{dt}$, onde q é a quantidade de água que atravessa uma seção transversal do cano. A área sob o gráfico de $\phi \times t$ é a quantidade total de água que passou pelo cano.
 - Exercício 18: Uma bomba retira gasolina de um reservatório de modo que a vazão aumenta com o tempo de acordo com $\phi = k\sqrt{t}$. Qual o valor de k de modo que essa bomba esvazie um reservatório de 3000 litros em cinco minutos? reposta com dois significativos -
 - (IX) Se i(t) é a corrente elétrica através de um fio condutor, então $i = \frac{dq}{dt}$, onde q é a quantidade de carga que atravessa uma seção transversal do fio. A área sob o gráfico de i×t é a quantidade total de carga que passou pelo fio.

- Exercício 19: Uma bateria é carregada através de uma corrente elétrica que decai exponencialmente com o tempo, de acordo com $i(t) = 2e^{-t/15}$. A corrente é dada em ampères (1A = 1C/s) e o tempo em minutos. A bateria estará carregada após a corrente ter praticamente zerado. Qual a quantidade de carga na bateria quando estiver totalmente carregada? (cuidado com as unidades !!!)
- (X) A densidade de um fio não-homogêneo varia com a posição x. Se um trecho dx do fio tem massa dm, então a densidade nesse local do fio é $\lambda = \frac{dm}{dx}$. A massa total do fio é a área sob o gráfico de $\lambda(x)$.
- Exercício 20: Uma certa barra não-homogênea de comprimento L tem densidade máxima em seu ponto médio, descrita por $\lambda(x) = k(L^2/4 x^2)$, onde x varia de -L/2 a +L/2 (o ponto médio da barra é colocado na posição x = 0, por conveniência).
 - (a) Qual o valor de k em função do comprimento L da barra e de sua massa total M?
 - (b) Qual a posição do centro de massa da metade direita dessa barra? Sugestão: divida a barra em pedacinhos Δx , cada um com massa Δm , e calcule o centro de massa do conjunto. Exprima o resultado na forma de um somatório, e depois obtenha uma integral fazendo o limite $\Delta x \rightarrow 0$.

RESPOSTAS

- 1. 39
- **2.** (a) 6 (b) -1/6 (c) 21,6 (d) 15,1 (e) 69,2 (f) 3,47 (g) 2/3
- **3.** (a) 0,644 (b) 0,0721
- **4.** 4,45
- **5.** 8,59
- **6.** 1,72
- 7. 0,295
- **8.** 2,50
- **9.** 1.22
- **10.** (a) $5\ln 2 = 3.47$ (b) $-10\ln 2 = -6.93$
- 11. (a) A = -2 B = 2 (b) 0,811 (c) -5,55 (d) 1,62
- **12.** 5.01
- **13.** 1
- **15.** 0,342
- **16.** 1/4 = 0.250
- **17.** 13,3km
- **18.** $0.58 \text{ litros/s}^{1.5}$
- **19.** 1800 C
- **20.** (a) $k = 6M/L^3$ (b) 3L/32 (c)

© 2004-13 Mauricio Fabbri MCT/INPE: http://www.las.inpe.br/-fabbri Universidade São Francisco - USF Itatiba/Campinas - http://www.saofrancisco.edu.br São Paulo - Brazil Permitido uso livre para fins educacionais, sem ônus, desde que seja citada a fonte.